1

Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Film Deposition Part I: Epitaxy 外延生长

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Optoelectronic Devices

grow single crystal films on single crystal substrates

Semiconductor Heterostructures

GaAs AlAs

GaAs/AlGaAs heterostructure: bandgap engineering

Z. I. Alferov

H. Kroemer

2000 Nobel Prize in Physics

Xing Sheng, EE@Tsinghua

Epitaxial Growth

Homoepitaxy

Heteroepitaxy

(doped) Si on Si, GaAs on GaAs, AlAs on GaAs Ge on Si,

- Solid Phase Epitaxy (SPE)
 - amorphous Si -> crystalline Si
- Liquid Phase Epitaxy (LPE)
 2Ga (I) + 2AsCl₃ (I) = 2GaAs (s) + 3Cl₂ (g)
- Chemical Vapor Deposition (CVD)
 Ga(CH₃)₃ (g) + AsH₃ (g) = GaAs (s) + 3CH₄ (g)
- Molecular Beam Epitaxy (MBE)
 2Ga (g) + As₂ (g) = 2GaAs (s)

Solid Phase Epitaxy (SPE)

amorphous Si -> crystalline Si

annealing at high temperature

Liquid Phase Epitaxy (LPE)

□ 2Ga (I) + 2AsCl₃ (I) = 2GaAs (s) + $3Cl_2$ (g)

Chemical Vapor Deposition (CVD)

□ $Ga(CH_3)_3$ (g) + AsH₃ (g) = GaAs (s) + 3CH₄ (g)

Molecular Beam Epitaxy (MBE)

□ 2Ga (g) + As₂ (g) = 2GaAs (s)

Deposition at Surfaces

Deposition at Surfaces

Si (100) surface

terrace (梯田)

Deposition at Surfaces

Growth Mechanisms

competition between surface and interface energies

Frank-van der Merwe mode (2 dimensional growth mode)

interface energy

Volmer-Weber mode (Island growth mode)

interface energy

Stranski-Krastanov mode (Layer & island growth mode)

Online Surface Monitoring

Reflection high-energy electron diffraction (RHEED)

Online Surface Monitoring

Lattice Constants vs. Bandgap

Lattice Constants vs. Bandgap

Lattice Constants vs. Bandgap

Vegard's law: assume linear mixing

Q: In_xGa_{1-x}As on InP? Q: How to design a 1.55 μm laser?

Lattice Matched/Mismatched Growth

'metamorphic' growth

Si on Si GaAs on GaAs AlAs on GaAs GaAs on Ge

GaAs on Si, Ge on Si, GaN on Si, ...

Strain in the Film

Growth Energy

strain energy

Fig. 3.34 A coherent interface with slight mismatch leads to coherency strains in the adjoining lattices.

misfit dislocation energy

Fig. 3.35 A semicoherent interface. The misfit parallel to the interface is accommodated by a series of edge dislocations.

$$E_d = \frac{\mu b^2}{2\pi (1 - \nu)S} \ln\left(\frac{\beta d}{b}\right)$$
$$E_d \propto \ln(d)$$

Growth Energy

Wafer 'Bowing' by Stress

stress measured by curvature 27

Anti-Phase Boundary (APB)

349 nm

0 nm

Applications

- Strained Si for CMOS
 GaN Growth
- Quantum Wells
 Nanowires
- III-V Quantum Dots
 2D Materials Growth
- Colloidal Quantum Dots
 Multijunction Solar Cells
- Superlattice
 Epitaxial Liftoff
- Selective Area Growth

Strained Silicon

tensile strain increases electron mobility

compressive strain increases hole mobility

Strained Silicon

NMOS: uniaxial tensile stress from stressed SiN film

Fig. 3 TEM of NMOS transistor showing high tensile stress nitride overlayer. PMOS: uniaxial compressive stress from sel. SiGe in S/D

Fig. 4 TEM of PMOS showing SiGe heteroepitaxial S/D inducing uniaxial strain.

From K. Mistry et al., "Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology," 2004 VLSI Technology Symposium, pp. 50-51. 21 SEMATECH

III-V Quantum Dots

InGaAs is not lattice matched to GaAs

32

III-V Quantum Dots

Colloidal Quantum Dots

Colloidal Quantum Dots

Quantum Wells

electronic confinement optical confinement

2000 Nobel Prize in Physics

AlGaAs / GaAs quantum wells

Superlattice 超晶格

conventional quantum wells

superlattice

Selective Area Growth

At high T, Ge, III-Vs grow on Si, but not on SiO₂

Selective Area Growth

Grow Ge single crystals on amorphous substrate

UHVCVD GeH₄ (g) = Ge (s) + $2H_2$ (g)

selective, only on Si, not SiO₂ GeO is not stable

WILEY-VCH

GaN Growth

40

Gallium Nitride (GaN) LED

- GaN LED on sapphire
 - □ 日本, Nichia
 - **2014 Nobel Prize in Physics**

I. Akasaki H. Amano

S. Nakamura

- GaN LED on silicon carbide (SiC)
 USA, Cree
- GaN LED on silicon
 - □ 中国, 南昌大学
 - □ 2015年中国技术发明一等奖

GaN Growth on Sapphire

I. Akasaki H. Amano S. Nakamura

2014 Nobel Prize in Physics

H. Amano, *et al., Appl. Phys. Lett.* 48, 353 (1986)
H. Amano, *et al., Jpn. J. Appl. Phys.* 28, L2112 (1989)
S. Nakamura, *et al., Appl. Phys. Lett.* 64, 1687 (1994)

- 1. growth with AIN buffer
- 2. GaN p-type doping
- 3. GaN blue LED!

GaN Growth on Silicon

GaN Growth on Silicon

Si Nanowire Growth

Au-Si eutectic alloy

III-V Nanowire Growth

metal catalysts reduce growth temperature

III-V Nanowire Growth

- Direct growth of III-V film on Si:

Creation of massive threading dislocation due to the large lattice mismatch strain between III-V and Si

- Direct growth of III-V film on Si:

Defect-free III-V can be grown on Si because lattice mismatch strain can relieved via the nanowire sidewall

2D Materials Growth

grain boundaries exist

lattice match is not restrict for monolayers

Solar Cells

A single junction cell cannot get >37% efficiency W. Shockley and H. A. Queisser, J. Appl. Phys. 32, 510 (1961)

C. H. Henry, J. Appl. Phys. 51, 4494 (1980) 49

Multijunction Solar Cells

Use the entire solar spectrum

W. Shockley and H. A. Queisser, *J. Appl. Phys.* **32**, 510 (1961) C. H. Henry, *J. Appl. Phys.* **51**, 4494 (1980) **50**

Multijunction Solar Cells

- Lattice matched epi-growth (MOCVD or MBE)
- Current matching
- Suitable bandgaps

Multijunction Solar Cells

Stacked MJ Solar Cells

Stacked MJ Solar Cells

bonded AlGaInP/GaAs // GaInAsP/GaInAs solar cells

World record efficiency: 46%

Release; transfer

Regrow

Epitaxy Liftoff

AIAs

GaAs

substrate

GaAs and AIAs

- Iattice matched growth
- AIAs is selectively etched by HF

flexible III-V devices

LED

GaAs

Etch in HF

-2 mm

'Remote' Epitaxy

Remote epitaxy through graphene enables two-dimensional material-based layer transfer

Yunjo Kim¹*, Samuel S. Cruz¹*, Kyusang Lee¹*, Babatunde O. Alawode¹, Chanyeol Choi¹, Yi Song², Jared M. Johnson³, Christopher Heidelberger⁴, Wei Kong¹, Shinhyun Choi¹, Kuan Qiao¹, Ibraheem Almansouri^{1,5}, Eugene A. Fitzgerald⁴, Jing Kong^{2,6}, Alexie M. Kolpak¹, Jinwoo Hwang³ & Jeehwan Kim^{1,4,6}

